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Abstract

The lattice contribution to thermal conductivity of single-walled carbon nanotubes with three different screw symmetry (chirality) is studied
using the Green–Kubo relation from linear response theory and molecular dynamics based thermal current auto-correlation functions. The
interactions between carbon atoms are analyzed using the Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential. The
results obtained show that, due to an exponential-decay character of the long-time thermal current auto-correlation functions, quite accurate
lattice thermal conductivities can be obtained using computational cells considerably smaller than the phonon mean free path. In addition, the
computed lattice contributions to thermal conductivities are found to agree within a factor of two with their counterparts obtained using the
Boltzmann transport equation. Also, chirality is found to affect lattice thermal conductivity by as much as 20%.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

As the size of electronic and mechanical devices is re-
duced into nanometer length scale, materials thermal con-
ductivity becomes an increasingly important since the oper-
ations of such devices may typically require that significant
amounts of heat be dissipated in a small region. In general,
however, experiment determination of thermal conductivity
in nano-scale devices is quite difficult (e.g.[1]), particular
in the case of devices with complex geometries. Fortunately,
reliable theoretical and computational methods have been
developed for predicting the thermal properties of nanoscale
materials and devices (e.g.[2]).

Because of a remarkable combination of their properties
(e.g. high hardness and stiffness, light weight, special elec-
tronic structure, high stability, etc.), carbon nanotubes are
being considered as prime candidate materials for nano-scale
device applications. Consequently, considerable effort has
been invested in characterizing properties of carbon nan-
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otubes, particularly their electronic and mechanical proper-
ties [3–6]. Surprisingly, despite the importance of thermal
management in nano-scale devices, there has been relatively
little progress in characterizing thermal conductivity of car-
bon nanotubes. This is partly due to challenges associated
with nano-scale experimental measurements mentioned
above, but it is also a result of technological difficulties of
synthesizing high-quality, well-ordered nanotubes. Conse-
quently, theoretical calculations of thermal conductivity of
carbon nanotubes are presently very essential.

Theoretical calculations of thermal conductivity of ma-
terials can be classified as two main approaches: (a) first
principles based atomistic simulations (e.g.[7–9]). This ap-
proach is particularly useful for nano-scale devices where
the experimental determination of the thermal conductiv-
ity is quite challenging; and (b) continuum calculations
based on transport theories such as the Boltzmann transport
equation[10–12]. The main advantage of the continuum
approach is that it enables an analysis of relatively large
systems. However, the approach entails the knowledge of
certain parameters such as phonon relaxation time and
phonon density of states which must be determined using
either experimental measurements (may be difficult in the
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case of nano-scale devices) or by theoretical calculations.
An addition shortcoming of the continuum approach is that
solving the governing integro-differential transport equation
may be quite difficult in some cases.

Because of the aforementioned limitations of the contin-
uum approach, the first principles based atomistic simula-
tions are increasingly getting more attention as a means of
predicting thermal properties. Besides not requiring the prior
knowledge of the model parameters, atomic-scale calcula-
tions enable quantification of the effect of microstructure
(e.g. phase interfaces and surface reconstruction) on ther-
mal properties. Furthermore, atomistic simulations can be
used to determine the parameters for the continuum mod-
els discussed above and, thus, help bridge gap between
atomistic-scale and continuum-level calculations.

There are generally two main components of thermal con-
ductivity of a material: (a) an electronic component which
is controlled by the electronic band structure, electron scat-
tering, and electron-phonon (lattice vibrations) interaction;
and (b) a lattice component which is mainly controlled by
phonons and phonon scattering. In the present paper, only the
lattice contribution to thermal conductivity of carbon nan-
otubes is considered using atomistic simulations. It should
be noted that the electronic contribution to thermal conduc-
tivity is very small and can be neglected only in materials
with large band gaps. As far as carbon nanotubes are con-
cerned, the size of their band gap is found to be dependent
on their screw symmetry (chirality), as well as on their di-
ameter and length. The largest band gap (on the order of
1.5 eV) is found in small diameter, short (n, m) nanotubes
with the rollup vectorsn and m satisfying the condition:
|n−m| �= 3p, wherep is an integer. For other types of nan-
otubes, the band gap is considerably smaller approaching
zero in the case of “arm chair” nanotubes in whichn = m.
For comparison, the band gap in a typical insulator is on
the order of 5–10 eV and of a semiconductor in a range be-
tween 0.5 and 2.5 eV. Based on these observations, one may
conclude that electronic contribution to the thermal conduc-
tivity can be significant in carbon nanotubes, particularly in
those with metallic behavior, i.e. with a small band gap.

When thermal conductivity of solid crystalline materials
is being calculated using atomistic simulations, due to a rel-
atively large phonon mean-free path in such materials, one
might expect that the size of the simulation cell on the or-
der of several hundred nanometers must be used to prevent
phonon scattering from the cell boundaries. In addition,
quantification of phonon-phonon interactions (responsible
for the finite values of thermal conductivity) is generally
very complicated (e.g.[13]). In a recent study, Che et al.
[2] carried out molecular dynamics simulations and used
the linear-response theory based Green–Kubo equation and
energy–current auto-correlation functions to determine ther-
mal conductivity of diamond. They found that while the
accuracy of the thermal conductivity is indeed dependent
on the size of the periodic cell, an accurate thermal con-
ductivity can be obtained using periodic cells about 40–60

times smaller than the actual phonon mean free path. They
attribute this finding to the fact that the energy–current
auto-correlation time is much shorter than the energy re-
laxation time. The approach of Che et al.[2] is used in the
present work to determine the lattice contribution to thermal
conductivity of single-walled carbon nanotubes of different
chiralities.

The organization of the paper is as follows: a brief
overview of the theoretical background related to the com-
putation of thermal conductivity is given inSection 2.1.
Section 2.2andAppendix Acontain details concerning the
atomistic simulation procedure and the interatomic poten-
tial used. The main results obtained in the present work are
presented and discussed inSection 3. The key conclusions
resulting from the present work are given inSection 4.

2. Procedure

2.1. Theoretical background

At the macroscopic level, thermal conductivity is defined
from the Fourier’s law for steady-state heat conduction as:

�Jq = −Λ · ∇T (1)

where�Jq is the steady-state heat flux (current),Λ the thermal
conductivity second-order tensor and∇T the temperature
gradient.

In general, the total energy current,�JE, includes the con-
duction heat current,�Jq, and the diffusion energy current,
µ�J , where�J is the particle current, andµ is the chemical
potential. Thus, the following relation between the energy
current and the heat current can be defined[14]:

�Jq = �JE − µ�J. (2)

In solids under non-extremely high temperatures, the diffu-
sion contribution to the energy current can be neglected.

In a system consisting of discrete particles, the energy
density, h(r), can be expressed (in the classical limit) as
the site energy of each particle and consequently, the heat
current can be defined as:

�Jq = d

dt

∑
i

�rihi (3)

where the raised arrow denotes a vector quantity,�r the po-
sition vector,t is time and subscripti denotes particlei.

One approach to the determination of thermal conductiv-
ity by atomistic simulations is to place the computational cell
in contact with two different reservoirs with temperatures
T1 andT2 and to calculate the heat current when the system
reaches the steady state. However, due to small dimensions
of the computational cell (typically 10–50 nm edge side),
even a small temperature difference of 10 K across the sys-
tem gives rise to a thermal gradient on the order of 108 K/m.
It is unlikely that the linear response theory (i.e. the linear-
ity between the heat flux and the temperature gradient as
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defined inEq. (1)) would hold under such extreme thermal
loading. Moreover, this temperature gradient maybe smaller
than the thermal fluctuations in the system, making it diffi-
cult to obtain convergence of the simulation results within
reasonable simulation times.

Due to the shortcomings of the approach discussed
above, the fluctuation–dissipation theorem from the linear
response theory which provides a connection between the
energy dissipation in irreversible processes (heat conduction
in the present case) and thermal fluctuations (of the heat
current in the present case) of a system in equilibrium[15]
is used in this work. Within this approach, the thermal con-
ductivity tensor can be expressed in terms of heat-current
auto-correlation functions,CC

J (t), [15,16] as:

Λc = 1

kBT 2V

∫ ∞

0
dt CC

J (t) (4)

wherekB is the Boltzmann’s constant,T temperature,V vol-
ume and

CC
J (t) = 〈�Jq(t)�Jq(0)〉. (5)

CC
J (t) is obtained by phase (particles positions and momenta)

space (Γ ) averaging as:

〈�Jq(t)�Jq(0)〉 =
∫

dΓ exp(−βH)�Jq(t)�Jq(0)∫
dΓ exp(−βH)

(6)

where

H =
∑
i

hi. (7)

within the framework of molecular dynamics simulations,
Eq. (7) is evaluated as:

〈�J(t)�J(0)〉 = 1

Ncorr

∑
Ncorr

�J(t0 + t)�J(t0) (8)

where

t = Nt �t, 0 ≤ Nt ≤ NMD (9)

t0 = N0 �t, 0 ≤ N0 ≤ NMD − Nt (10)

and

Ncorr = int

(
NMD

Nt

)
, (11)

wheret and t0 are, respectively, the current and the initial
correlation times,�t is the simulation time step,NMD is the
total number simulation steps,N0 andNt are integers, and
int denotes operator for conversion of a real number to the
closest smaller integer.

It should be noted that the analysis presented above is
classical, i.e. no quantum effects are considered. In gen-
eral, quantum effects are not critical when the temperature
is significantly higher than the Debye temperature. While
no information is available regarding the Debye tempera-
ture of carbon nanotubes, this temperature is expected to

be considerably higher than the room temperature consider-
ing magnitudes of the Debye temperature in other forms of
carbon. Using a quantum-physics based analysis, Che et al.
[2] showed that in (hypothetical) purely-harmonic systems
in which different phonon modes do not interact, quantum
effects are negligible. In real systems, on the other hand,
phonons are coupled and this anharmonicity is, in fact, re-
sponsible for a finite phonon mean free path, and hence, for
finite thermal conductivity. Fortunately, thermal conductiv-
ity in such systems is dominated by low-frequency phonon
modes, which are nearly classical. Hence, a lack of inclusion
of the quantum corrections is generally considered not criti-
cal when calculating thermal conductivity. As far the anhar-
monicity effects are concerned, they are generally accounted
for when (classical) molecular dynamics simulations based
on realistic interatomic potentials are carried out and, hence,
such simulations can be used, as is done in the present work,
to determine thermal conductivity quite accurately.

2.2. Simulation procedure

Molecular dynamics simulations are conducted using
computational cells which are of a finite size in one and
infinitely long in the other two directions. The periodic
boundary conditions are applied in the finite direction.
Each cell contains a single (n, m) nanotube with the nan-
otube axis aligned with the direction in which the cell is
finite. The dimension of the cell in the nanotube direction
is varied in order to accommodate nanotubes of different
chirality and, also, to explore the effect of the cell size
on thermal conductivity. Three types of carbon nanotubes
are studied in present work: (a) a (10, 10) armchair type
nanotube; (b) a (18, 0) zig-zag type nanotube; and (c) a
(14, 6) nanotube. The first nanotube is selected because it
is frequently found in synthesized nanotube bundles, while
the other two are selected on the basis that they have the
diameter compatible to that of the (10, 10) nanotube. Other
structural characteristics of the three nanotubes are given in
Table 1while the corresponding atomic arrangements are
shown inFig. 1(a)–(c).

The interactions between carbon atoms have been mod-
eled using the Adaptive Intermolecular Reactive Empirical
Bond-Order (AIREBO) potential developed by Stuart et al.
[17]. This potential is an extension of the original Brenner’s
Reactive Empirical Bond-Order (REBO) potential[18] and
includes non-bonding (intermolecular) atomic interactions.

Table 1
Structural characteristics of the carbon nanotubes studied in the preset
work

Nanotube
type (n, m)

Nanotube
radius (nm)

Unit cell
length (nm)

Number of atoms
per unit cell

(10, 10) 1.351 0.2477 40
(18, 0) 1.404 0.4290 72
(14, 6) 1.387 3.8130 632
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Fig. 1. Atomic configuration associated with: (a) a (10, 10) arm-chair nanotube; (b) a (18, 0) zig-zag nanotube; and (c) a (14, 6) nanotube of a general
chirality.

It should be noted that while frequently the interactions
between carbon atoms within a single single-walled car-
bon nanotubes are modeled using only the bonding part
of an inter-atomic potential, the AIREBO potential used in
the present work has been optimized to also include the
non-bonding interactions between carbon atoms of the same
single-walled carbon nanotube. Based on the AIREBO po-
tential (reviewed briefly inAppendix A), the total potential
energy be formally written as a summation of pair-wise in-
teractions as[18]:

Vtot =
∑
i

∑
j>i

Vij. (12)

Consequently, the energy of sitei, hi, can be defined as:

hi = p2
i

2mi

+ 1

2

∑
j

Vij. (13)

However, sinceVij is, in fact, a many-body potential, the
equation for heat currentJq(t) based onEq. (3)is somewhat
complicated and, under the condition of a zero net momen-
tum for the system, is given by:

�Jq(t) =
∑
i

�vihi + 1
2

∑
i,j

∑
k,l

�rij �F kl
ij · �vi, (14)

where

�F kl
ij = −∂Vkl

∂�rij
. (15)

where�vi andi�rij are, respectively, thei-site velocity and the
i–j sites relative position vector.

All molecular dynamics simulations are carried out in the
present work using a fixed 1 fs time increment. For each
simulation run, the system is equilibrated under isothermal
(T = 300 K) conditions using Berendsen thermostat[19] for
40 ps. Subsequently, constant energy molecular dynamics
simulations are carried out for 400 ps and the results used
to calculating the heat current for every time step.

3. Results and discussion

3.1. The effect of computational cell size

As discussed earlier, the relative magnitudes of the com-
putational cell size with respect to the phonon mean free
path can be an important factor affecting the accuracy of
thermal conductivity computed using atomistic simulations.
When the simulation cell is too small, the time for phonons
to travel through the simulation cell is shorter than the de-
cay time of the heat-current auto-correlation function. This
causes phonon scattering to take place more frequently than
they would in an infinite system. In such cases, only the short
time correlation functions are expected to be accurate. Nev-
ertheless, Che et al.[2] showed that thermal conductivity
can be computed using computational cells smaller than the
phonon mean free path. Using the macroscopic laws of re-
laxation and the Onsager’s postulate for microscopic thermal
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Table 2
Optical and acoustic weighting factors,Ao and Aa, and relaxation times,τo and τa, obtained by nonlinear least squares fitting of the heat current
autocorrelation function for (10, 10) armchair single-walled carbon nanotubes

Numbers of atoms Cell length (nm) Ao (×10−6 J2/cm2) τo (ps) Aa (×10−6 J2/cm2) τa (ps) Aoτo/Aoτo + Aaτa

400 2.477 3.339 0.074 1.211 17.597 0.0012
800 4.954 3.334 0.070 1.216 17.870 0.0011

1600 9.908 3.299 0.072 1.227 17.940 0.0011
3200 19.816 3.376 0.069 1.232 17.851 0.0011
6400 39.632 3.339 0.070 1.230 17.877 0.0011

Average 3.343 0.070 1.229 17.869

fluctuations, Che et al.[2] first showed that the long-time
asymptotic decay of the heat-current auto-correlation func-
tion (which primarily controls thermal conductivity) is of an
exponential type. Consequently, relatively short time simu-
lation data obtained using medium-size computational cells
can be used to determine quite accurately the exponential de-
cay parameters of the heat-current autocorrelation function.

To determine the effect of the computational cell size on
lattice thermal conductivity, five different sizes of the com-
putational cell are used for each of the three carbon nan-
otubes analyzed in the present work. The number of atoms
in the computational cell in each case is given inTables 2–4.
Due to the fact that the carbon nanotubes are single walled
(one atomic layer thick), only thermal conductivity in the
direction of nanotubes axis is computed. This is achieved by
using only the data for thermal-energy current in the direc-
tion of nanotubes axis when calculating the auto-correlation
functions,Eq. (5).

Examples of typical heat-current auto-correlation func-
tions for the (10, 10), (18, 0) and (14, 6) nanotubes are
shown inFig. 2(a)–(c), respectively. These function are ob-
tained using computational cells containing 3200, 2880 and

Table 3
Optical and acoustic weighting factors,Ao and Aa, and relaxation times,τo and τa, obtained by nonlinear least squares fitting of the heat current
autocorrelation function for (18, 0) zig-zag single-walled carbon nanotubes

Numbers of atoms Cell length (nm) Ao (×10−6 J2/cm2) τo (ps) Aa (×10−6 J2/cm2) τa (ps) Aoτo/Aoτo + Aaτa

360 2.145 3.327 0.075 1.135 17.230 0.0013
720 4.290 3.329 0.071 1.141 17.306 0.0012

1440 8.580 3.338 0.073 1.150 17.395 0.0012
2880 17.160 3.330 0.071 1.153 17.349 0.0012
5760 34.320 3.344 0.069 1.150 17.401 0.0012

Average 3.338 0.070 1.150 17.375

Table 4
Optical and acoustic weighting factors,Ao and Aa, and relaxation times,τo and τa, obtained by nonlinear least squares fitting of the heat current
autocorrelation function for (14, 6) single-walled carbon nanotubes

Numbers of atoms Cell length (nm) Ao (×10−6 J2/cm2) τo (ps) Aa (×10−6 J2/cm2) τa (ps) Aoτo/Aoτo + Aaτa

632 3.813 3.280 0.068 1.129 16.774 0.0012
1264 7.626 3.294 0.070 1.133 16.803 0.0012
2528 15.252 3.289 0.069 1.134 16.906 0.0012
5056 30.504 3.330 0.065 1.135 16.899 0.0011

Average 3.311 0.069 1.131 16.880

2528 atoms, respectively. In general, the auto-correlation
functions are characterized by a rapid initial decay followed
by a gradual, long-time exponential decay. The initial fast
decay can be attributed to high-frequency optical phonon
modes which are associated with out-of-phase vibrations of
the atoms residing on two sub-lattices in the nanotube crystal
structure. These phonons are scarcely populated and weakly
coupled with low-frequency acoustic (in-phase vibrational)
modes at room temperature and, hence, they do not sig-
nificantly contribute to thermal conductivity. The long-time
behavior of the heat-current auto-correlation functions and,
hence, thermal conductivity are controlled by low-frequency
acoustic phonon modes.

The auto-correlation function results such as the one
shown in Fig. 2(a)–(c) are fitted using the Levenberg–
Marquardt nonlinear least-squares method[23] to the fol-
lowing double exponential function:

CC
J (t) = Ao exp

(−t

τo

)
+ Aa exp

(−t

τa

)
, t ≥ 0, (16)

where the subscript o and a are used to denote the opti-
cal and acoustic phonon modes, respectively. Substitution



M. Grujicic et al. / Materials Science and Engineering B107 (2004) 204–216 209

Fig. 2. Heat-current auto-correlation functions for: (a) a (10, 10); (b) a (18, 0) and (c) a (14, 6) single-walled carbon nanotube at 300 K.

of Eq. (16) in Eq. (4) yields the following expression for
thermal conductivity:

λ = 1

kBT 2V
(A0τ0 + Aaτa). (17)

Following the procedure suggested by Che et al.[2],
the auto-correlation function results for all simulation runs
corresponding to the first 3 ps of the correlation time are
fitted to the function defined inEq. (16) to determine the
parametersAo, τo, Aa, and τa. The results of this proce-
dure are given inTables 2–4. A simple analysis of the
results shown inTables 2–4indicates that the contribution
of high-frequency optical phonon modes to thermal con-

ductivity, (Aoτo)/(Aoτo + Aaτa), is indeed very small is
typically around 0.1%.

The dependence of thermal conductivity in the three types
of carbon nanotubes analyzed in the present work on the size
of the simulation cell is displayed inFig. 3(a)–(c). The error
bars shown inFig. 3(a) and (b)correspond to±1 standard
deviation for the results of five molecular dynamics runs.
The results displayed inFig. 3(a)–(c)show that, as expected,
when the simulation cell is too small (i.e. contains less than
∼1000 atoms), the atoms in a region of the simulation cell
do not have enough time to lose their previous dynamic
information before a periodically equivalent phonon arrives
in this region. Consequently, since the corresponding corre-



210 M. Grujicic et al. / Materials Science and Engineering B107 (2004) 204–216

Fig. 3. Lattice thermal conductivity in: (a) a (10, 10); (b) a (18, 0) and (c) a (14, 6) single-walled carbon nanotube at 300 K.

lation functions are contaminated by such memory effects
and they do not reflect behavior of the real system, com-
puted thermal conductivity is not very accurate. On the other
hand, when the computational cell size is sufficiently large,
computed thermal conductivity is accurate and, essentially,
independent of the size of the computational cell. The results
shown inFig. 3(a)–(c)suggest that the minimum “critical”
size of the computational cell, corresponding to the max-
imum correlation time of 3 ps, is around 15–20 nm and is
associated with cells containing approximately 3000–3500
atoms.

The analysis presented above established a minimum crit-
ical computation cell size beyond which the cell size does
not affect thermal conductivity. It is interesting to determine
how the critical cell size compares with the phonon mean
free path in single-walled carbon nanotubes. To estimate the
phonon mean free path,L, the following relation form the
kinetic theory of solids is used[20]:

λ ≈ 1
3CvρvL (18)

whereCv is the mass-based constant-volume specific heat
and v is the speed of sound. The molecular dynamics
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simulations carried out in the present work yielded the
mean interatomic spacing of 0.142 nm. The density of
single-walled carbon nanotubes is difficult to determine
since they are one-atom thick. Since single-walled carbon
nanotubes are typically bundled in ropes with a triangular
arrangement of the nanotubes and an inter-tube spacing
equal to the Van der Walls radius of carbon (0.17 nm), the
nanotubes’ wall thickness is set equal to this value. This pro-
cedure yielded the density ofρ = 2.3 g/cm3. The experimen-
tal values for the specific heat ofCv = 500 J/(kg K) and for
compressibility ofβT = 0.024 GPa−1 for single-walled car-
bon nanotubes of comparable diameters has been taken from
Refs.[21,22]. Using the following equation:v = 1/

√
ρβT,

the speed of sound has been computed as 4256 m/s, Lastly,
using the average thermal conductivity for the three types
of nanotubes,λ = 16.5 W/(cm K), andEq. (18), the mean
free path for acoustic phonons ofL = 1000 nm has been
obtained. Thus, the acoustic phonon mean free path is larger
the critical computational cell size by a factor of 50–65.

The finding presented above shows that despite the fact
that the phonon mean free path is considerably larger than
the sizes of computational cells used, convergence in ther-
mal conductivity can be obtained,Fig. 3(a)–(c). It should be
noted that in order to set the computational cell size compa-
rable with the phonon mean free path, computational cells
containing on the order of 107–108 atoms would have to be
used. Molecular dynamics simulations using such a large
number of atoms, while feasible particularly if an advantage
is taken of the parallel computing, would be computational
very expensive and are not very appealing. Instead, as ini-
tially shown by Che et al.[2] and also confirmed in the
present work, smaller size simulation cells and short-time
heat-current auto-correlation functions can be used to deter-
mine thermal conductivity.

The values of the weighting factorsAo andAa and the cor-
responding exponential decay constantsτo andτa obtained
by the nonlinear least-squares fitting of the heat-current
auto-correlation functions in the three types of nanotubes
and for the simulation cells with different numbers of atoms
are listed inTables 2–4. To determine the average values of
these parameters, the weighting factorsAo andAa are nor-
malized by the nanotube volume, weighted by the number of
atoms in each simulation and averaged over all simulations
for a given type of nanotube. Similar averaging without vol-
ume normalization is used to obtain average values for the
relaxation times,τo andτa. The results of this procedure are
listed inTables 2–4in the row denoted as “average”.

3.2. The effect of chirality

The results displayed inFig. 3(a)–(c)further show that
chirality has an effect on the lattice part of thermal con-
ductivity in single-walled carbon nanotubes. Specifically,
thermal conductivity is the highest (λ = 17.8 W/(cm K))
in the (10, 10) arm-chair nanotube and the lowest (λ =
15.6 W/(cm K)) in the (14, 6) nanotube of general chiral-

ity. Since these results pertain to the lattice contribution to
thermal conductivity alone, they have to be attributed to
differences in phonon-phonon interactions and the resulting
differences in mean free path in the three types of nanotubes.
As stated earlier, detailed modeling phonon–phonon inter-
actions is very complicated[13] and it is beyond the scope
of the present study. Nevertheless, it is well established that
lattice thermal conductivity is controlled by the so-called
Umklapp phonon collisions represented as:k1 + k2 =
k3 + G, wherek1 andk2 are wave vectors of the colliding
phonons,k3 the wave vector of the resulting phonon andG
is 2π times a reciprocal lattice vector. Due to differences
in chirality and the resulting differences in magnitudes of
the periodic length in the axial direction, one could expect
differences in the permissibleG vectors and, hence, lattice
thermal conductivity in the three nanotubes analyzed.

It should be noted that, based on the magnitude of the
band gap alone, the electronic contribution to thermal con-
ductivity can also be expected to be the highest in the (10,
10) nanotube and the lowest in the (14, 6) nanotube. It should
be noted, however, that in addition to the band gap, the
electronic band structure as well as electron–electron and
electron–phonon scattering also affect the electronic contri-
bution to thermal conductivity. Nevertheless, the observation
that lattice thermal conductivity can vary by as much as 20%
with nanotube chirality and that electronic thermal conduc-
tivity can be affected in the same direction by chirality, sug-
gests that thermal conductivity of individual single-walled
nanotubes in nanotube ropes (consist of nanotubes of vari-
ous chirality) can vary substantially from one nanotube to
the other.

3.3. The effect of temperature

The molecular dynamics based procedure for compu-
tation of the thermal conductivity in single-walled carbon
nanotubes described inSections 2.1 and 2.2is utilized in
this section to determine the temperature dependence of
thermal conductivity in these materials. Over the last few
years, there has been a number of experimental and theoret-
ical investigations of the effect of temperature on the ther-
mal conductivity of single-walled carbon nanotube bundles
and of individual multi-walled carbon nanotubes[31–35].
However, no reliable experimental data presently exist for
the thermal conductivity of individual single-walled carbon
nanotubes.

The effect of temperature in a range between 50 and
400 K on the mean value of thermal conductivity in the three
types on single-walled carbon nanotubes analyzed in the
present work is shown inFig. 4. At the lowest temperature
explored, thermal conductivity increases with an increase in
temperature while in the upper portion of the temperature
range examined, thermal conductivity decreases with an
increase in temperature. This finding suggests that, at low
temperatures, thermal conductivity is dominated by acous-
tic phonons while, at high temperatures, phonon-phonon
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Fig. 4. The effect of temperature on the thermal conductivity in the three
types of single-walled carbon nanotubes analyzed in the present work.

umklapp scattering causes the thermal conductivity to de-
crease with an increase in temperature[32].

For comparison, experimental results pertaining to the ef-
fect of temperature on the thermal conductivity in a bundle
of the single-walled carbon nanotubes are also displayed in
Fig. 4 [34]. While the agreement between the computational
and the experimental results in the common temperature
range can be characterized as only fair, the true validation
of the present computational model entails the experimen-
tal thermal conductivities of isolated single-walled carbon
nanotubes with the known chirality. Unfortunately, as stated
earlier, such experimental data are presently not available.

3.4. A comparison with the Boltzmann transport equation

In this section, the equation of phonon radiative transport
(EPRT) [29], derived from the Boltzmann transport equa-
tion [30] is used to compute lattice thermal conductivity of
carbon nanotubes and compare it with the results presented
in the previous sections. Since details of this calculation
will be presented in a future communication, only a brief
overview of the EPRT approach will be given here. For a
one-dimensional case, the EPRT equation is defined as:

1

v

∂Iω

∂t
+ µ

∂Iω

∂x
= 0.5

∫ 1
−1Iω dµ − Iω

vτR
(19)

where Iω is the flux of energy in the direction of phonon
propagation per unit area, per unit solid angle, per unit fre-
quency,t is time,x the nanotube axial direction,ω frequency
andµ = cosθ (θ the polar angle),τR the phonon relaxation
time.

Eq. (19)is applied to the case of a 10�m long nanotube,
subjected att = 0 to a temperature difference of 0.1 K be-
tween its ends and solved using a first-order upward finite

Fig. 5. Steady-state temperature (a) and heat flux (b) distributions along
the nanotube length computed using the Equation of Phonon Radiative
Transfer (29).

difference method. In these calculation,τR = τa = 17 ps is
used. The calculations ofIω are carried out until a steady
state is reached and then to integrations procedures are ap-
plied to compute the temperature and the heat flux. The re-
sulting steady state temperature and heat flux distributions
along the nanotube length are shown inFig. 5(a) and (b), re-
spectively. It should be noted that a normalized temperature
axis,(T(K)−300.0)/0.1, is used inFig. 5(a)and normalized
length axes,x (�m)/0.1, are used inFig. 5(a) and (b).

Using the results shown inFig. 5(a) and (b)and a
one-dimensional form of the steady-state Fourier heat-
conduction equation,Eq. (1), thermal conductivity is
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computed as 8.3 W/(cm K). This value is smaller by a factor
of ∼2 than its counterparts displayed inFig. 3(a)–(c).

4. Conclusions

Based on the results obtained in the present work, the
following main conclusions can be drawn:

1. Due to an exponential-decay character of the long-time
current-energy auto-correlation functions, the lattice
contribution to thermal conductivity of single-walled
carbon nanotubes can be determined quite accurately us-
ing molecular dynamics simulations and computational
cells substantially smaller than the phonon mean free
path.

2. The lattice contribution to thermal conductivity can vary
by as much as 20% in single-walled carbon nanotubes
depending on their chirality.

3. The lattice contributions to thermal conductivity com-
puted using molecular dynamics based thermal-current
auto-correlation functions and the ones computed using
the Boltzmann transport equation agree within a factor
of two with each other.
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Appendix A. The adaptive intermolecular reactive
empirical bond order (AIREBO) potential

The Brenner’s Reactive Empirical Bond Order (REBO)
potential[18,24–26]is an interactive potential initially de-
veloped to model the covalent bonding interactions in carbon
and hydrocarbon systems attending Chemical Vapor Depo-
sitions (CVD) of diamond. While this potential and its vari-
ous incarnations have been recently extended to analyze en-
ergetic, elastic and vibrational properties of fullerenes[26],
carbon nanotubes[27], amorphous carbon[28], etc. they
are not the most appropriate for such analyses due to sig-
nificant contribution of nonbonding (intermolecular) inter-
actions which the REBO potential does not include. Re-
cently, Stuart et al.[17] upgraded the REBO potential by
including an adaptive treatment of the interactions involv-
ing nonbonded atoms and dihedral–angle intermolecular in-
teractions. This potential, named the Adaptive Intermolecu-
lar Reactive Empirical Bond Order (AIREBO) potential is
briefly overviewed in this section.

Within the AIREBO potential formulation, the potential
energy of a system of atoms is represented as[17]:

E = 1
2

∑
i

∑
j �=i


EREBO

ij + ELJ
ij +

∑
k �=i,j

∑
l �=i,j,k

Etors
kijl


 (A.1)

The REBO potential,EREBO
ij , describes the interactions be-

tween covalently-bonded atoms (the intramolecular inter-
actions), while the dispersion and intermolecular repulsion
interactions between nonbonded atoms are accounted for
through the use of the Lennard-Jones (LJ)ELJ

ij term. The last
term in Eq. (A.1) is used to describe dihedral–angle inter-
molecular interactions which are deemed not significant in
the analysis of carbon nanotubes[17] and, hence, this term
is not considered in the present work.

The REBO interaction term,EREBO
ij , is defined as[18]:

EREBO
ij = VR

ij + bijV
A
ij (A.2)

where the repulsive,VR
ij , and the attractive,VA

ij , interaction
energies between atomsi andj separated byrij in Eq. (A.2)
are combined in a ratio determined by the many-body bond-
ing parameter,bij. The repulsive term is defined as[18]:

VR
ij = wIJ(rij)

[
1 + Qij

rij

]
Aij e−αijrij (A.3)

where the parametersQij, Aij, andαij depend on the atom
typesi andj. Values for these and all other REBO potential
parameters can be found inTable 2, Ref. [17]. ThewIJ term
in Eq. (A.3) is a bond–weighting function defined as:

wij(rij) = S′(tc(rij)), (A.4)

which is used to switch off the REBO interactions, in a
continuous manner, when the distance between atomsi and
j exceeds an atomic-type dependent bonding distance and
the i–j bond breaks. The switching function,S′(tc(rij)), and
the scaling function,tc(rij), are defined as:

S′(t) = Θ(−t) + Θ(t)Θ(1 − t)1
2[1 + cos(πt)] (A.5)

and

tc(rij) =
rij − rmin

ij

rmax
ij − rmin

ij

(A.6)

respectively, while the switching region is defined in terms
of rmin

ij andrmax
ij . Θ in Eq. (A.5)denotes the Heaviside step

functions,S′(t) is unity for t < 0 and zero fort > 1 and
provides a smooth switching between these two values for
0 < t < 1.

The attractive pair interaction term inEq. (A.2) is given
by a triple exponential function as[18]:

VA
ij = −wIJ(rij)

3∑
n=1

B
(n)
ij e−β

(n)
ij rij (A.7)

and is switched off smoothly over the same switching re-
gion asVR

ij through the use of the bond weighting function
wIJ(rij).
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The many-body bonding term,bij, in Eq. (A.2)defines the
“bond order” for the interaction between atomsi andj (the
largerbij, the stronger thei–j bond), by making the strength
of the i–j bond dependent on the local atomic environment
and is given as:

bij = 1
2[pσπ

ij + pσπ
ji ] + πrc

ij + πdh
ij (A.8)

The principal contribution tobij in Eq. (A.8)comes from
the covalent-bond interaction terms,pσπ

ij , andpσπ
ji (pσπ

ij is
not necessarily equal topσπ

ji ), wherepσπ
ij is defined as:

pσπ
ij =


1 +

∑
k �=i,j

wij(rik)gi(cosθjik)eλjik + Pij




−1/2

(A.9)

whereθjik is the bond angle between therji vector connecting
neighboring atomsj and i and the vectorsrki connecting
atomi to another neighboring atomk. The penalty function,
gi, in Eq. (A.9), is used to provide an increase in the energy
for bonds that are too close to one another and its functional
form is a fifth-order spline. The coefficients of the spline are
listed in Table 7, Ref.[17].

The two remaining terms inEq. (A.9)represent relatively
small correction factors. The eλjik term is added to improve
the potential energy surface for abstraction of hydrogen
atoms from hydrocarbons while thePij term (a two dimen-
sional cubic spline) is used to obtain accurate bond energies
for small hydrocarbons. The parameters for these two terms
are given, respectively, in Tables 2 and 8, Ref.[17].

In addition to the covalent-bonding interactions given by
Eq. (A.9), the REBO potential also includes contributions to
the bond order from radical and conjugation effects. These
enter the potential through theπrc

ij term inEq. (A.8), which

is a three dimensional cubic spline ofNij, Nji, andNconj
ij as

independent variables.Nij andNji are, respectively, atomsi

andj coordination numbers, whileNconj
ij is a local measure

of conjugation in thei–j bond and is given as:

N
Conj
ij = 1 +


 ∑

k �=i,j

δkCwik(rik)S
′(tconj(Nki))




2

+

∑

l �=i,j

δlCwjl(rjl)S
′(tconj(Nlj))




2

(A.10)

tconj in Eq. (A.10)specifies the range of coordination num-
bers under which a bond is assumed to be part of a radical
or conjugated network and is defined as:

tconj(N
conj
ij ) =

N
conj
ij − N

conj,min
ij

N
conj,max
ij − N

conj,min
ij

(A.11)

TheN
conj
ij variable, which is unity for nonconjugated bonds

and can be as high as nine in polyaromatic compounds,
is an empirical measure of unsaturation that is dependent

entirely on local coordination. The interpolation points for
the three-dimensional spline,πrc

ij , are provided in Table 9,
Ref. [17].

The last contribution to the bond orderbij in Eq. (A.8) is
πdh

ij . This term imposes a penalty for rotation around multiple
bonds and is defined as:

πdh
ij = Tij(Nij, Nji, N

conj
ij )

∑
k �=i,j

∑
l �=i,j

(1 − cos2 ωkijl)

×w′
ik(rik)w

′
jl(rjl)Θ(sin(θjik) − smin)

×Θ(sin(θijl) − smin) (A.12)

whereTij is a three-dimensional cubic spline, with interpo-
lation points given in Table 10, Ref.[17]. The torsion angle
ωkijl is defined as the angle between the plane defined by the
vectorsrik andrij and that defined by the vectorsrij andrjl
as:

cosωkijl = rji × rik

|rji × rik| · rij × rjl

|rij × rjl| (A.13)

The bond weighting function,w′(rij), used inEq. (A.12)
is defined as:

w′
ij(rij) = S′(t′c(rij)) (A.14)

and differs slightly from that defined inEq. (A.4), through
a different scaling functiont′c defined as:

t′c(rij) =
rij − rmin

ij

rmax
ij − rmin

ij

(A.15)

TheELJ
ij term inEq. (A.1) is based on the Lennard-Jones

(LJ) 12–6 potential and is defined as:

V LJ
ij (rij) = 4εij

[(
σij

rij

)12

−
(
σij

rij

)6
]

(A.16)

The inclusion of the LJ term creates several challenges,
foremost of these is introduction of a steep repulsive wall,
which prevents unbonded atoms (atoms associated with dif-
ferent molecules) from getting close enough to interact via
the REBO potential. Rather than overcoming this problem
by incorprating a simple distance-dependent switching func-
tion in the LJ potential, and thus neglecting the effect of
chemical environment, Stuart et al.[17] introduced three cri-
teria to switch on or off the LJ interactions in an adaptive
fashion. The three criteria are based on: (a) the separation
distance between the two atoms in question; (b) their bond
order; and (c) the network of covalent bonds connecting the
atoms. Consequently the LJ interaction term inEq. (A.1) is
defined as:

ELJ
ij = S(tr(rij))S(tb(b

∗
ij)CijV

LJ
ij (rij)

+ [1 − S(tr(rij))]CijV
LJ
ij (rij), (A.17)

where the atomic-separation-distance based switching func-
tion, S(t), is given as:

S(t) = Θ(−t) + Θ(t)Θ(1 − t)[1 − t2(3 − 2t)] (A.18)
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and the scaling function,tr(rij), in Eq. (A.17)is given as:

tr(rij) =
rij − rLJ min

ij

rLJ max
ij − rLJ min

ij

(A.19)

When rij > rLJ max
ij , S(tr(rij)) = 0 and the magnitude of

the i–j atomic separation distance,rij, has no effect on the
LJ interactions. Whenrij < rLJ max

ij , on the other hand, the
first-term inEq. (A.17) is non zero and the LJ interactions
are contingent on the values ofS(tb(b∗

ij)) andCij.

The switching region [rLJ min
ij , rLJ max

ij ] in Eq. (A.19) is
chosen such that no artificial reaction barrier is introduced
due to LJ repulsions at short distances (rLJ min

ij = σij) and
that switching off leaves the minimum of the LJ potential
function unperturbed (rLJ max

ij = 21/6σij).
The second (bond strength) criterion affecting the LJ inter-

actions is included through the use of theS(tb(b
∗
ij)) switch-

ing function inEq. (A.17)where the scaling functiontb(bij)

is given as:

tb(bij) =
b∗

ij − bLJ min
ij

bmax
ij − bmin

ij

(A.20)

When the two atoms in question are covalently bonded, (the
bond-order parameter,b∗

ij, is large and, hence,tb ≥ 1 and
S(tb(b

∗
ij
)) = 0), the repulsive LJ interactions (represented by

the first term inEq. (A.17)) vanishes. For lower values of the
bond order parameter, on the other hand, the LJ interactions
will be included to a variable degree depending on the value
of b∗

ij. For sufficiently small values ofb∗
ij (which indicates

that covalent bonding is not likely),S(tb(b∗
ij)) = 1, and the

LJ repulsion interactions are undiminished.
It should be noted that separations between nonbonded

atoms generally exceed the maximum covalent bonding dis-
tance,rmax

ij in Eq. (A.6), and hence the REBO parameter,
bij, does not provide an accurate representations of the bond
order. To overcome this problem, the AIREBO bond order
parameter for non-bondedi–j atomic interactions,b∗

ij, is rep-

resented by a hypothetical REBObij term evaluated atrmin
ij

with the distances between atomsi and j to each of their
neighbors being kept unchanged.

The third criterion governing the LJ interactions is repre-
sented by the connectivity switchCij in Eq. (A.17)and is
introduced to suppress LJ interactions between first neigh-
bors (1–2), second neighbors (1–3) and third neighbors (1–4)
which are either well described by the REBO potential or by
the dihedral-angle potential described below. To derive an
expression forCij, a bond weight functionwij(r)ij is first de-
fined to enable a smooth transition between bonded(wij =
1) and nonbonded (wij = 0) atomic interactions. The bond
weight function is given as:

wij(rij) = S′(tc(rij)) (A.21)

where the switching functionS′(t) is given as:

S′(t) = Θ(−t) + Θ(t)Θ(1 − t)1
2[1 + cos(πt)] (A.22)

while the scaling functiontc(rij) is defined as:

tc(rij) =
rij − rmin

ij

rmax
ij − rmin

ij

(A.23)

To exclude (1–2), (1–3) and (1–4) LJ interactions, the
connectivity switchCij is defined as:

Cij = 1 − max{wij(rij), wik(rik)wkj(rkj), ∀k;
wik(rik)wkl(rkl)wlj(rlj), ∀k, l} (A.24)

Thus, when atomsi and j are neighbors(wij(rij) = 1) or
connected by one(wik(rik)wkj(rkj) = 1) or two (wik(rik) ·
wkl(rkl) · wlj(rlj) = 1) neighbors,Cij = 0 and there are no
LJ interactions between the atoms.

In summary, the strength of LJ interactions is affected
by atomic separation distance, bond order and connectivity.
For the LJ interactions to be fully included, the atom pairs
in question must not be first, second or third neighbors and
must either be beyond a cut-off distance or have a very low
value of the bond order.
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